Abcam offers a variety of associated reagents and products for cancer research. Our catalog has been extended to include:

- Thousands of secondary antibodies and primary antibodies in a wide range of applications.
- Exposure biotin-free IHC kits with high sensitivity.
- A wide range of recombinant and purified native proteins and peptides.

More information available at:
www.abcam.com/cancer

BRCA pathway
- Transcriptional regulation
- Molecular interactions
- DNA damage & response

BRCA1
- Estrogen inducible DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

BRCA2
- DNA repair, end joining
- Non-homologous recombination
- X-chromosome remodeling
- Homologous recombination
- Cell cycle

BRCA1
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

GADD45
- DNA damage response genes
- Growth/transforming checkpoint activation
- DNA repair, end joining
- Non-homologous recombination
- X-chromosome remodeling
- Homologous recombination
- Cell cycle

FLI1
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

BACH1
- DNA damage response genes
- Growth/transforming checkpoint activation
- DNA repair, end joining
- Non-homologous recombination
- X-chromosome remodeling
- Homologous recombination
- Cell cycle

P53
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

C-Myc
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

FANCD2
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

ESTR
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle

ATF1
- DNA damage response genes
- Growth arrest and checkpoint activation
- DNA repair genes
- Chromatin remodeling
- Recombination
- Homologous recombination checkpoints
- Cell cycle
BRCA1 and BRCA2

Maintenance of genomic stability

The breast and ovarian cancer susceptibility proteins BRCA1 and BRCA2 were discovered in the 1990s through genetic studies of families with high risk of breast and ovarian cancer linked, the former in particular to Bronte carcinoma. Over the past 15 years, a large body of research has elucidated these proteins in a variety of functions associated with maintenance of genome integrity, including DNA repair, transcription, and centrosome assembly. Although BRCA1 and BRCA2 are large proteins with overlapping functions, they have distinct structural domains and interact with different partners to regulate specific processes.

Diagram Description

The diagram illustrates the various interactions and functions of BRCA1 and BRCA2 proteins, highlighting their roles in DNA repair, transcription, and other cellular processes. The diagram includes:

- **Core Complex**
- **RING Finger Domains**
- **BRCA1-A Complex**
- **BRCA1-C Complex**
- **Linkage to the Fanconi anemia pathway**
- **Functional domains of BRCA1 and BRCA2**

Each section is labeled and provides a visual representation of the proteins' interactions and roles.

Key Interactions

- **BRCA1-B Complex** via BRCT domains: DNA Replication, S-Phase Progression
- **BRCA1-A Complex** via BRCT domains: DNA Damage Signaling, G2/M checkpoint
- **BRCA1-C Complex** via BRCT domains: DNA and resection and G2/M checkpoint control

References

- Adapted from Huen et al., 2010
- Adapted from Wong et al., 2007